فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی











متن کامل


اطلاعات دوره: 
  • سال: 

    1391
  • دوره: 

    5
  • شماره: 

    17
  • صفحات: 

    7-14
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    1335
  • دانلود: 

    337
چکیده: 

در سال های اخیر استفاده از نظریه مجموعه های فازی جهت مدل سازی پدیده های آب شناختی که دارای پیچیدگی و عدم قطعیت بالایی هستند، مورد توجه پژوهشگران قرار گرفته است. از این رو، در این پژوهش از مدل های مبتنی بر منطق فازی شامل سامانه استنتاج فازی (FIS) و سامانه استنتاج فازی- عصبی تطبیقی (ANFIS) به منظور پیش بینی جریان رودخانه استفاده شده است. در این پژوهش از داده های دبی روزانه حوزه آبخیز لیقوان چای به مدت 6 سال (از سال آبی 76-1375 تا سال آبی 81-1380) برای پیش بینی جریان رودخانه لیقوان، استفاده شد. در پیش پردازش اولیه داده ها، تصادفی بودن آن ها با استفاده از آزمون نقاط عطف مورد بررسی قرار گرفت. سپس جهت تعیین مدل های بهینه ورودی به سامانه ها، کرولوگرام داده ها مورد بررسی قرار گرفت. در نهایت پیش بینی در 5 مدل که با دبی های روز قبل طراحی شدند، انجام شد. ارزیابی نتایج پیش بینی ها با استفاده از معیارهای آماری نشان داد که مدل ANFIS با دقت بالاتر و پراکندگی کمتری (RMSE=0.0234 برای دوره آزمون) نسبت به مدل FIS (RMSE=0.1982) برای دوره آزمون) دبی این رودخانه را پیش بینی کرده است. همچنین این مدل در شبیه سازی دبی های پیک نسبت به مدل FIS دقیق تر عمل می نماید.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 1335

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 337 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1394
  • دوره: 

    28
  • شماره: 

    107
  • صفحات: 

    84-96
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    836
  • دانلود: 

    178
چکیده: 

فرآیند بارش-رواناب پدیده ای فیزیکی است که بررسی آن به سبب تاثیرپذیری از پارامترهای مختلف، دشوار می باشد. تاکنون روش های مختلفی برای تحلیل این پدیده ارایه شده است. پژوهش حاضر با هدف بررسی کارآمدی مدل ترکیبی موجک-نروفازی و نروفازی در شبیه سازی فرآیند بارش-رواناب با دخالت دادن ارتفاع آب معادل برف در حوزه آبخیز لتیان واقع در استان تهران صورت گرفته است. بدین منظور92 تصویر سنجنده مودیس در طی سه سال آبی 83-1382 تا 85-1384 از سایت ناسا دریافت گردید و سطح پوشش برف در هر یک از تصاویر استخراج و میزان ارتفاع آب معادل برف در طی سال های مورد نظر محاسبه شد. همچنین داده های ارتفاع بارندگی، درجه حرارت و دبی در سال های مورد نظر در دسترس بوده که برای مدلسازی استفاده شد. نتایج نشان داد مدل ترکیبی موجک - نروفازی با ورودی باران، دما و آب معادل برف با یک روز تاخیر با ریشه میانگین مربعات خطا 0.006 و ضریب تبیین 0.97 نسبت به مدل نروفازی با تفکیک خوشه ای با ورودی باران، دما و آب معادل برف بدون تاخیر با ریشه میانگین مربعات خطا 0.059 و ضریب تبیین 0.62 و شبکه نروفازی با تفکیک شبکه ای با ورودی باران، دما و آب معادل برف با ریشه میانگین مربعات خطا 0.059 و ضریب تبیین 0.65 دارای عملکرد بهتری بوده است..همچنین نتایج نشان داد دخالت دادن آب معادل برف باعث افزایش دقت مدل شده است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 836

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 178 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1393
  • دوره: 

    5
  • شماره: 

    18
  • صفحات: 

    17-30
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    1139
  • دانلود: 

    289
چکیده: 

لطفا برای مشاهده چکیده به متن کامل (PDF) مراجعه فرمایید.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 1139

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 289 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 5
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    2014
  • دوره: 

    1
تعامل: 
  • بازدید: 

    245
  • دانلود: 

    0
چکیده: 

BUBBLE POINT PRESSURE (PB) IS ONE OF THE MOST IMPORTANT PROPERTIES OF CRUDE OIL. SUBSTANTIALLY, PB IS DETERMINED LABORATORY PVT TESTS. HOWEVER, IN MANY CASES, LABORATORY DETERMINATION OF PB IS IMPOSSIBLE FOR SEVERAL REASONS. IN ADDITION, LABORATORY METHODS ARE VERY EXPENSIVE AND TIME CONSUMING. THEREFORE, IN SUCH CONDITION, A FAST AND CHEAP METHOD COULD BE USEFUL FOR PB PREDICTION. THE ARTIFICIAL INTELLIGENCE COULD BE A SUITABLE CANDIDATE METHOD FOR THIS PURPOSE. IN THIS STUDY, ADAPTIVE NEURO- FUZZY INFERENCE SYSTEM (ANFIS), WHICH IS ONE OF THE ARTIFICIAL INTELLIGENCE TECHNIQUES, WAS APPLIED FOR PB PREDICTION. A TOTAL OF 429 DATA SETS OF DIFFERENT CRUDE OILS MIDDLE EAST RESERVOIRS WERE USED. DATA SETS INCLUDE PB AND CONVENTIONAL PVT PROPERTIES. AMONG THE DATA SETS, 286 DATA SETS WERE SELECTED RANDOMLY FOR CONSTRUCTING THE GENETIC ALGORITHM, AND THE OTHER INCLUDED 143 DATA SETS WERE USED FOR MODEL TESTING. THE CORRELATION FACTOR (R2) BETWEEN PREDICTED PB BY THE ANFIS MODEL AND THE EXPERIMENTAL PB IN THE TEST DATA WERE 0.87 WHICH SHOWS A GOODISH AGREEMENT BETWEEN THE PREDICTED VALUES AND EXPERIMENTAL VALUES.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 245

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

Adigun Olatunji H. | Oyedele Olusola J.

اطلاعات دوره: 
  • سال: 

    2019
  • دوره: 

    5
  • شماره: 

    1 (serial 17)
  • صفحات: 

    11-18
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    239
  • دانلود: 

    0
چکیده: 

This paper employs Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict water level that leads to flood in coastal areas. ANFIS combines the verbal power of fuzzy logic and numerical power of neural network for its action. Meteorological and astronomical data of Santa Monica, a coastal area in California, U. S. A., were obtained. A portion of the data was used to train the ANFIS network, while other portions were used to check and test the generalization ability of the ANFIS model. Water level predictions were made for 24 hours, 48 hours and 72 hours, in which training, checking and testing of the model were performed for each of the prediction periods. The model results from the training, checking and testing data groups show that 48 hours prediction has the least Root Mean Square Error (RMSE) of 0. 05426, 0. 06298 and 0. 05355 for training, checking and testing data groups respectively, showing that the prediction is most accurate for 48 hours.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 239

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    12
  • شماره: 

    4
  • صفحات: 

    334-340
تعامل: 
  • استنادات: 

    2
  • بازدید: 

    20
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 20

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 2 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

JASBI J. | SEYED HOSSEINI S.M. | PILEHVARI N.

اطلاعات دوره: 
  • سال: 

    2010
  • دوره: 

    20
  • شماره: 

    4
  • صفحات: 

    187-196
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    428
  • دانلود: 

    0
چکیده: 

Nowadays, in turbulent and violate global markets, agility has been considered as a fundamental characteristic of a supply chain needed for survival. To achieve the competitive edge, companies must align with suppliers and customers to streamline operations, as well as agility beyond individual companies. Consequently Agile Supply Chain (ASC) is considered as a dominant competitive advantage. However, so far a little effort has been made for designing, operating and evaluating agile supply chain in recent years. Therefore, in this study a new approach has been developed based on Adaptive Neuro Fuzzy Inference System (ANFIS) for evaluating agility in supply chain considering agility capabilities such as Flexibility, Competency, Cost, Responsiveness and Quickness. This evaluation helps managers to perform gap analysis between existent agility level and the desired one and also provides more informative and reliable information for decision making. Finally the proposed model has been applied to a leading car manufacturing company in Iran to prove the applicability of the model.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 428

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

NADERPOUR H. | MIRRASHID M.

نشریه: 

SCIENTIA IRANICA

اطلاعات دوره: 
  • سال: 

    2020
  • دوره: 

    27
  • شماره: 

    2 (Transactions A: Civil Engineering)
  • صفحات: 

    657-670
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    211
  • دانلود: 

    0
چکیده: 

In complex engineering problems, there are some inexact conceptions, or a lot of parameters which must be considered. Soft computing is an approach that successfully applied to solve such problems. Determination of fuzzy rules for many problems has not been quite possible by an expert human. In this case, a neuro-fuzzy system which is the combination of neural network (for its ability to learn by datasets) and fuzzy system (for solving the drawback of the neural network) can be enhancing the performance of the system with several parameters or complex conditions. This paper shows the capability of a neuro-fuzzy system namely ANFIS to predicting the shear strength of reinforced concrete beams with steel stirrups. For this propose, the collection of laboratory results which was published in literatures used to train and finally test the proposed system. For this purpose, the sub-clustering approach (SC) applied for generating ANFIS. The results indicated that the considered neuro-fuzzy system was able to predict the shear strength of the RC beams which have been reinforced with steel stirrups.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 211

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Hojjat Mohammad

نشریه: 

GAS PROCESSING

اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    11
  • شماره: 

    1
  • صفحات: 

    37-44
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    2
  • دانلود: 

    0
چکیده: 

Accurate determination of the natural gas compressibility factor is crucial for reservoir simulation and material balance computations in petroleum engineering. The data-driven AI techniques, like artificial neural networks, fuzzy systems, and neuro-fuzzy systems, are gaining momentum in estimating fluid properties. An adaptive neuro-fuzzy inference system (ANFIS) is applied here to develop a model to estimate the compressibility factor of two natural gas types. The Takagi-Sugeno fuzzy inference system serves as the foundation for constructing the ANFIS model, where the triangular membership functions are applied. The training data consists of 80% of the available data selected randomly, and the remaining 20% is applied in testing. This developed model is of high accuracy in estimating the compressibility factors of natural gas types, with an average absolute relative deviation of 0.05% and a maximum absolute relative deviation of 0.55% difference between the estimated and experimental value data. Comparing the findings here with the correlations indicates that the ANFIS model in terms of accuracy outperforms its counterparts in this realm.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 2

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

RAEESI VANANI IMAN | SOHRABI BABAK

اطلاعات دوره: 
  • سال: 

    2020
  • دوره: 

    13
  • شماره: 

    4
  • صفحات: 

    587-621
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    117
  • دانلود: 

    0
چکیده: 

The implementation of modern ERP solutions has introduced tremendous opportunities as well as challenges into the realm of intensely competent businesses. The ERP implementation phase is a very costly and time-consuming process. The failure of the implementation may result in the entire business to fail or to become incompetent. This fact along with the complexity of data streams has led the researchers to develop a hierarchical multi-level predictive solution to automatically predict the implementation success of ERP solution. This study exploits the strength and precision of the Adaptive Neuro-Fuzzy Inference System (ANFIS) for predicting the implementation success of ERP solutions before the initiation of the implementation phase. This capability is obtained by training the ANFIS system with a data set containing a large number of ERP implementation efforts that have led to success, failure, or a mid-range implementation. In the initial section of the paper, a brief review of the recent ERP solutions as well as ANFIS architecture and validation procedure is provided. After that, the major factors of ERP implementation success are deeply studied and extracted from the previous literature. The major influential implementation factors in the businesses are titled as Change Orchestration (CO), Implementation Guide (IG), and Requirements Coverage (RC). The factors represent the major elements that guide the implementation project to a final success or to a possible failure if mismanaged. Accordingly, three initial ANFIS models are designed, trained, and validated for the factors. The models are developed by gathering data from 414 SMEs located in the Islamic Republic of Iran during a threeyear period. Each model is capable of identifying the weaknesses and predicting the successful implementation of major factors. After this step, a final ANFIS model is developed that integrates the outputs of three initial ANFIS models into a final fuzzy inference system, which predicts the overall success of the ERP implementation project before the initiation phase. This model provides the opportunity of embedding the previous precious experiences into a unified system that can reduce the heavy burden of implementation failure.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 117

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button